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STRUCTURE OF COMPLETELY DISPERSED SHOCK WAVES
IN RELAXING MIXTURES

A. L. Ni and O. 8. Ryzhov UDC 541.124:532.5

Shock waves in chemically active gas mixtures with an arbitrary number of reactions are discussed. It
is assumed that the difference between the frozen and equilibrium sound velocities calculated from the unper-
turbed state of the material is a small quantity relative to one of these velocities. The flow rate at infinity is
assumed to lie within the range between the frozen and equilibrium sound velocities; the shock wave does not
then contain discontinuities, i.e., it possesses complete dispersion. Different cases which may be encountered
upon increasing the velocity of the advancing flow are successively investigated. The method of splicing
exterior and interior asymptotic expansions is used to construct a solution.

1. Formulation of the Problem. Let us apply to the investigation of the structure of weak shock waves
in multicomponent relaxing media the system of equations which describes one~dimensional steady flow in the
transonic velocity range

2 dav’ dq Poo 7
2 (emwv' -+ Ea'Vf) iz = 8ze €2 757 %’ 8 = rz‘ €as (1.1)
dq;_ - . .
a7 = — Boy, 95 =Dq, + ey,

Both the length along the coordinate x' and the velocity v' of the perturbed motion of particles together
with the components of the vectors q}=(q};, ..., aiN) and wi=(wl, ..., wiN) of the completeness and affinity of
the chemical reactions are taken here in a special dimensionless system of units. The density, pressure, and
dimensionless thermodynamic coefficient, which is proportional to the curvature of the Poisson adiabat for a
mixture with constant composition, are denoted by the letters p, p, and m, respectively. The subscript « refers
to the state of the material in the advancing uniform flow. The small parameter ¢ is proportional to the ampli-
tude of the perturbations, and the appearance of the other small parameter 5‘2, is dictated by the conditions for
providing closeness of the frozen ag,, and the equilibrium ge., sound velocities in the unperturbed state. It is
assumed in the derivation of Egs. (1.1) that the velocity v, of the advancing flow deviates slightly from both
the frozen and equilibrium sound velocities; the number y; is used to specify this deviation, to wit,

(1.2)

Voo — Qfep = EqViVo0e
Any two positive-definite and symmetrical matrices can appear in the original Euler equations as the

kinetic matrix and the stability matrix of the system. Linear transformations of the completeness and affinity
vectors of the chemical reactions permit reducing these matrices to the unit E and diagonal D matrices,
‘respectively. This transformation is assumed to be carried out in the system of Eqgs. (1.1). The components
of the constant dimensionless vector e}=(e},, ..., elN), which are proportional to the adiabatic derivatives of
the specific internal 'energy of the system with respect to the specific volume and one of the components of the
completeness vector of the reactions, are also assumed to be subject to the indicated linear transformations.

Since the advancing flow is uniform and is in a state of complete thermodynamic equilibrium,

0 dv’ (1.3)

3
e oo ——+0 as 2’ - - oo,

== =0,
%

dq;
;
l_) —_ 01 @

The gas mixture reaches a new equilibrium state as a result of compression within the shock wave; therefore,

. d (1.4)
V' — vy 3”,-—»0, ;,’-»0 as v/ — -} oo,

The boundary conditions (1.3) and (1.4) determine the solution with an accuracy to an insignificant shift in x'.

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 59-75, March-
April, 1979. Original article submitted May 5, 1978.
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As will be evident in what follows, sometimes it is more convenient to operate with an equation of the
(N+1)-th order for the perturbed velocity

2 ON—k =73 l-(em..v 1g Y(h)) ] -0 (1.5)

R=()

instead of (1.1) [1]. Here the symbol 9 denotes the sum of all possible products which are composed of the
positive eigenvalues A, ..., AN, which are equal, respectively, to the diagonal elements dj;, ..., dyN of the
relaxation matrix R=ED= D and which are taken I at a time in each product. The parameters y(k) characterize
the deviations of each of the so-called intermediate sound velocities ay,, from the velocity of the advancing
flow, namely,

Voo — G = 0¥ P00, (1.8)

The intermediate sound velocities themselves are expressed by the formulas

, (1.7
Qpowo == dfco + g 6a'-’oa Z - 1)7" —h N— Dm*k-—iez‘
m=h41 IN-1
and are subject to the inequalities [2-4]
Too = Qg < Ag0 < o 0o o Oysy 0 << G0 = Bfcoe {1.8}

In the limiting cases k=0 and k= N we obtain 7(0) =Ye and Y(N) =yf. Thus Eq. (1.6) changes into (1.2} when the
intermediate sound velocity coincides with the propagation velocity of the perturbations in a mixture with a
constant chemical composition.

Let us integrate the first of Eqs. (1.1). Having determined the arbitrary constant from the boundary con-
ditions as x'——«, we have

- (1.9)

(v + a?f) 63("2(}2:8‘;;‘

Having made use of the boundary conditions as x'—+« and the relation
N 2 (1.10}

Qeoo = Qfoo == ‘;— Gavm;%—i
f=1 %
between the frozen and equilibrium sound velocities, which follows from (1.7) when k=0, we find
262y,

Uy = ~=
0 em

The latter equation offers the possibility of specifying the coefficients v or ¥y instead of the constant vy.

For the sake of brevity, in the following we will omit in the symbols of both the constants and the variable
quantities the primes and the subscript 2, which indicates the result of a linear transformation of the complete-
ness and affinity vectors of the chemical reactions.

2, General Properties of the Solution. The problem of the internal structure of shock waves is among
the classical ones. A comprehensive review of the theoretical and experimental investigations carried out up
to 1965 which are devoted to this problem is contained in [5, 6]. The principal conclusion of the early papers
reduces to the fact that there exists a sequence of relaxation zones situated next to one another if the rates of
the chemical reactions differ appreciably from each other. These zones have various widths deterrined by
one or several relaxation processes. One of the first attempts to give a quantitative analysis of the phenomenon
was evidently undertaken in [7]; numerical calculations confirmed the conclusion drawn on the basis of simple
physical considerations that shock waves have a "banded® structure. The problem of transient perturbations
excited in a gas mixture by the motion of a flat piston has been recently solved {8]. The data obtained show how
the stratification in time of relaxation zones with different widths occurs.

The solutions of the nonlinear system of equations (1.1) possess all the qualitative characteristics which
the solutions consfructed in [7] with the help of numerical methods do. These equations permit a systematic
analysis based on the method of splicing exterior and interior asymptotic expansions. Moreover, the assump-
tion of the closeness of the frozen and equilibrium sound velocities permits investigating all the regularities
inherent to the "banded™ structure of a shock wave. We note that the assumption indicated does not lead to
great restrictions, since the relative difference between the frozen and equilibrium sound velocities lies within
the 10% range for many actual chemically active gas mixtures.
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In order to exclude the formation of discontinuities in the shock wave, modes with ag,, >V, >ae,, Will be
investigated below. Setting k=0 and k=N in Eq. (1.6), we have
<0<y, (2.1)
When ¥; >0, the advancing flow is subjected at first to an abrupt compression, and then its parameters vary
continuously.

It is simplest to find the asymptotic form of the solution of the system of equations (1.1) as x——w if
one neglects the quadratic term in the integral (1.9). Finally,

Po
290 = —= e-q.
PV
From this follows the equation
dq '
dz (D + 7

_f= B -
Wpoo oovj )q (2.2)

for the completeness vector of the chemical reactions, where B is a symmetric matrix with elements by =
e;e
i%k-

We will investigate what the eigenvalues of the symmetric matrix

S=D+x k2 o m?f ——B, (2.3)

are, whose elements are sik. To this end we consider the quadratic form

q:(gi,gh)—,'z‘, surkib = z’xmz Fe (ge ) (2.4)

Yi,h=1 oovf i=1

We introduce the linear transformation
k £ = C,
which is specified by the relations

N
N, =8, i=14 ..., N—=1; TIN‘—‘E &;&;.

In the new variables the quadratic form (2.4) takes the form
N
@ (&, E) =¥, Ny) = ,’leihﬂi"lh,
i,h=

and the matrices S and W= Wy || are related by the equation
W = C*SC = C*DC + 5 —>— C*BC. (2.5)

PoctB Vs
Here the matrix which is the transpose to C is denoted, as usual, by the symbol C*.

The matrix D(!) =C*DC possesses a rather complex structure; however, it is possible to assert that it is
symmetric and positive~definite by virtue of the law of inertia of quadratic forms. Concerning the matrix
B() =C*BC, it has the single nonzero element plt) = 1, as direct calculation shows. It follows from this that
the matrix W is symmetric, and N— 1 of its principal minors

Wy Wiy Wy s Wh—11
A1=‘-u;112 A2= 3 ey AN—IZ
Woy Woy Wi, N~1-+ - WN—1,N-1

coincide with the analogous minors of the matrix DU, Since the latter is positive-definite, we conclude on the
basis of the Sylvester criterion [9] that Ay, Agy ...y AN~y are positive.

It remains to investigate the sign of the N-th principal minor Ay, which is simply det W. By virtue of
the properties of the determinants of the product of matrices, we have
det W = det C*.det S-det C = (det C)2.det S,
i.e., the signs of det W and det S are identical. As a result of simple calculations we find
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& o {2.6)
det S = II?» +2wa‘¥f ]IIl

N .
where the superscript (j) next to the product II(J)M indicates that )\j is excluded from the complete set of its

i=1

cofactors A;. Subsequent transformation of (2.6) leads o

det S = ﬁ x.[1 i L_ﬂ':__i ffz_]
i=1 ’ b2 poovzon G=1 b
1t is evident from Eq. (1.10) that the expression in square brackets on theright-hand side of the last equation is
written as 1+(Ye = ¥p/ys. Since all the eigenvalues A (i=1, ..., N) are positive, the condition det S <0 follows
from the inequalities (2.1). Thus the N-th principal minor Ay of the matrix W, which was introduced by Eq.
(2.5), has a negative sign,

Now let us apply the Jacobi method for the reduction of a quadratic form y(n;, m) to a sum of squares [91.
This method permits writing the coefficient of the j~th term in the form of the ratio Aj-i/Aj- Thence it is clear
that N— 1 eigenvalues of the symmetric matrix W are positive, and one eigenvalue is negative. By virtue of
the law of inertia of quadratic forms one can confirm that the eigenvalues of the original matrix S defined by
Eq. (2.3) possess the analogous property. Let us denote the eigenvalues of this matrix by I; and set 1y, ...,
lj-i >0, l] <0, Zj+1, ..oy and In>0.

Let us return to Eq. (2.2). The substitution into it of the expression
q = g ev* 2.7
for the completeness vector of the chemical reactions gives
(S + pE)g, = 0. (2.8)
Since the condltlon q—0 as x——w occurs, the integrals of Eq. (2.2) with p=—1;(i=1, ..., j— 1, j+1,.... N
should be discarded. From this we conclude that the coefficient in the exponent in Eq. (2.7) takes the single
value p=—1;. The homogeneous equation (2.8) determines the vector q, with an accuracy of an arbitrary factor.

Bearing in mind the relation between the perturbed velocity of the particles and the completeness vector of
the chemical reactions, let us represent the asymptote of the solution as x—~—c in the form

. 2.9
v=rce", ¢q;=— Y0 gh®, w=—1; (=1,...,8) 2.9)

We will now prove that the thermodynamic parameters g; increase monotonically, and the velocity of the
gas falls off monotonically along the coordinate, Let us introduce for the stated purpose the
auxiliary quantities q)i(=)\1-qi/ei. Treating v as a known function, we have

x

= | o@MTPE (=1,...,N).

-0

{2.10)

One can verify that the integral forms for q1 agree with the asymptotic Egs. (2.9) as x—=w. By virtue of the
first of the indicated equations there exists a range —« <x <x; in which the derivative dv/dx <0 if the arbitrary
constant ¢ «0. Solutions with ¢ >0 must be excluded from consideration, since they do not satisfy the boundary
conditions (1.4) as x —«. A monotonic nature of the variation of v will be established if it turns out that

dv(xg) /dx <0.

Let us assume the opposite and set dv(xy)/dx=0. Then in accordance with the first equation of the system
(1.1) we have

& dqad @) g 2.11)
&

Lo
>’I

|
-~

i ]

at the point xy. The combination of the remaining equations of this system with Eqs. (2.10) gives

4§ (zo) (2.12)

B e 2 [ (o) — 2@ R =y W),

The function v(x) reaches its minimum value v(xy) on the edge of the interval —« <x=x;. From this it follows
that the integrand in (2.12) is negative, and the derivatives
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dq:f(%)
dz -

>0 (i=1,..., N).

Summing the last inequalities multiplied in advance by ez/)\ we arrive at a contradiction to Eq. (2.11). This

contradiction proves that the gas velocity falls offmonotomcally along the coordinate x, Appeal to Eqs. (2.12)
leads to the conclusion of a monotonic increase of the components of the completeness vector of the chemical
reactions.

3. Roots of the Characteristic Equation. The eigenvalues of the matrix S are determined as the roots of
the characteristic equation which follows from (2.8) taken with opposite sign. It is obtained in most compact
form if one substitutes the first of Eqs. (2.9) into Eq. (1.5) for the perturbed velocity and discards the lowest
terms in the equation thus found. As a result,

N
lgo O'N_h'y(h)u"".—_— Py =0. (3.1)

As has been proven above, Eq. (3.1) has Nreal roots py==ly, ..., uN=""IN; only one of them is positive,
and the rest are negative. Let us arrange these roots in the following order:
“"il > “"H—l I(Z = 11 . ey N — 1)' (3‘2)

According to a fundamental theorem of algebra,

1 3 (3.3
Pr=wr B =) =3 B (= 0" o (o, )

where the roots py, ..., py Serve as the arguments of the sums op_i (). A comparison of Egs. (3.1) and (3.3)
with N—k=j gives .

(— 1Yoy (n) = il 0je @.4)
Vs

Let us establish an asymptotic distribution of the roots of the characteristic equation on the assumption
MM . 0> Ay > Ay (3.5)
Conditions of this kind very often characterize real chemical mixtures, where the reaction rates may differ by
several orders of magnitude. In addition, we will assume in what follows that each of the ratios e'{’/)&i (i=1,
, N) is eomparable to unity in order of magnitude.

The inequalities (3.5) permit simplifying considerably the expression for the intermediate sound veloci-
ties. Using the results expounded in [10], one can show that Eq. (1.7) reduces to

N—k 2 (3.6)
== Qoo — —*6,11}“, 2 km.

m={ m

When k=0, the exact relation (1.10) between the frozen and equilibrium sound velocities follows. Returning to
Eq. (1.6), we have
Nk 3.7
P 2
oyt Pl

w2
poo [ m=i m

Let us consider the various cases which may be encountered in connection with the solution of the charac-
teristic equation. First, let all the numbers V(k)~'1 k=0, ..., N. Thenarootshouldexist whichis muchlarger
than or of the order A, in absolute magnitude. According to the numbering established by the inequalities
(3.2), this is yy. Bearing in mind the conditions (3.5), we preserve only the main terms in Eq. (3.1). Asa
result, we find the approximate value

(N—1) (3.8)
B = — ¥ 7 A

The next roots ps, ..., uN are determined by the equation
= St N—1—hg(t)
PN——1=II(P«—Mi)=Z:)(—1)— Lin(pypt =0,
i=2 k=

where the superscript (1) next to the sum ol (1) indicates that y, is excluded from the complete set of its con-
stituent numbers p;. We write down the identity
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o5 (0) = wosly () -+ o5 (). (3.9)

It is possible to show that the estimate [u;|> | uy| is valid for the root y;. Making use of Eqs. (3.4) and (3.8),
we obtain approximately
e .

(1) N—1
Ox—1-r () = (— 1) O VI W
and then
. N—t
&Y,k
Py_y= — =D Z on—i¥ ’M .
AgY k=0

The result of the application of the identity (3.9) to the sum o reads oN k™ A10§\1f\-1—k if one neglects
terms which are not dependent on A;. Finally,
N—1 {3.10)

1 (1) (B k
y—([v—:i—) g IN—1-2Y e
k=0

Py_y=
A comparison of Egs. (3.1) and (3.10) shows that the polynomials PN and Py are similar in their structure.
From this it immediately follows that an equation of the type (3.8) is valid for the root pj.

Continuing the procedure described, one can calculate the roots g, ..., yn. Asymptotic expressions for
them are evident:
(N—1) R
ui‘—'—}mxi (i=1,...,N). (©.11)
All these roots are negative with the exception of one. By virtue of the inequalities (1.8) and (2.1) and Egs.
(3.6) and (3.7), the asymptotic representation of the single positive roct b is distinguished by the conditions
A=)

- (N—j+1) (-
Hr*—m?‘j, YUY <0<y

3.12)

When i=1, Eq. (3.11) changes into (3.8).

Let us consider the case in which ]y(N‘1)}<<1, and the remaining constants £k are, in agreement with
Eq. (3.7), comparable in order of magnitude with unity, v§<0, and y(N‘l) >0 (i=2, ..., NJ. Let us set the index
i=2 in Eq. (3.4), after which we preserve only the main terms

(N—2)
oy (1) = ¥

Ahs

in it. If all the roots p;(i=1, ..., N) would be of the same order of magnitude as A, or even smaller in absolute
magnitude than this number, the last equation would not be satisfied. Among the roots of the characteristic
equation there necessarily exist those whose absolute magnitude exceeds A,. For their determination we
extract from (3.1) the approximate equation

Y MYED g My = 0.
Adhering to the numbering established by the requirements (3.2), we have

1 Y(N»l) ‘/ 1 . [ ,V\N—i) 2 ,V(N—z) (3‘13)
Wiy = — 5 A ok - M — Ahy
b 27y AL Y Vs

with the ratio Y{N"%7¢ <0.

In order to find the next roots pg, ..., uy it is necessary to solve the equation

2 .
(=TT (=0,

N N
PNAzzII (w—pp) =

i=3

AT

Let us use the identity

65 (1) = paps053 () + (o + o) o5F () + 054 (). (3.14)

Since |w ,[>> |psl, the result of the application of Eqgs. (3.4) and (3.13) is written approximately in the form

) (&) ©
(1,2) N—k ¥ N—*k
ONZo—y (M) = (—1) =D Ridy

The polynomial P-4 is converted to the form
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N—2

: 1
pN—z =TT On—p (k) k.
MotV —2) ,;) v

Returning to the identity (3.14) for the sum oy_p, we find that its asymptotic form is oy = )\17\20&1_’22 Zx if one
keeps only the main term in it. Finally,

N—2
1 . (3.15)
Py_g= ;(Jv_—;) Z 5N~z~h'\?(k)!kh~
B=0

It is evident from a comparison of Eq. (3.15) with (3.1) and (3.10) that the polynomial Py, is similar in its
structure to the polynomials Py and Py_y. As is clear from this, the desired roots s, ..., uy are specified by
Eq. (3.11) with i=3, ..., N, and all of them are negative. The value of the single positive root is established by
Eq. {3.13) with the upper sign in front of the radical on its right-hand side.

Finally, let the condition [Y{N"9)|«1 exist with j=1, ..., N— 1. In accordance with the inequalities (1.8)
and (2.1) and Eqgs. (3.6) and (3.7), the remaining constants 'y(N‘i) <0 for i=0, ..., j — 1, whereas Y(N'i) >0 for
i=j+1, ..., N. In this case the first j — 1 negative roots of the characteristic equation are evidently found from
Eq. (3.11), in which i=1, ..., j— 1. The next two roots are

o Ly T L, =D : (3.16)
S il A |~ Mhin D

The positive one of them is obtained by selecting the upper sign in front of the radical on the right-hand side of
(3.16). The remaining N— j — 1 negative roots of the characteristic equation are determined by Egs. (3.11), in
which i=j+2, ..., N,

4. Quasiequilibrium Mode. Let us assume that the velocity of the advancing flow remains less even than

the first intermediate veloeity oy, although it exceeds the equilibrium velocity agw. Then YN-1) <0 when i=0,
.., N—1, and only ¥ >0. We introduce a new scale of length by means of

T = zplhy. @.1)

The first equation of the original system (1.1) takes the form

2 (emev + 82y )—d—v-=——62i-i—e-(h ;4 ;) “s
7 de ai=1 ?"N i iq; IAda)

whereas the remaining equations for the components of the completeness vector of the chemical reactions are
of the form

dg, A, ;
i=_—(Qi+%y) (i=1,..;N—1), @.3)

dqy ' ey
%I—V- = — (qN +_7\‘:-V l)).

Let us eliminate the thermodynamic variable q from the system of equations (4.2) and (4.3). Finally,
we obtain
N 2 N s
Ay d d 1 A dg, . : 1 s2f 1 & A\ | do
—}%m{(amWL’—;—EZYf)%%:I + 5 65}:2 €; <;\%‘ - 1);,;; + [SITLwU + Sé?j —!— '2—62 (X_l— + g-x;"_z Tl)] —J‘Z’\’ = 0.
Here in accordance with the conditions (3.5) we proceed to the limit as Aj/A;—0 (i=2, ..., N). Taking account
of the fact that theratio eg/hi ~1 for any i=1, ..., N, and making use of Eq. (3.7) with k=N—1, we have
Al 4.4)
— d 1]
2 (emop -+ 29 %'31; =— 6322-;%; e; (Mg + €v)-
The above equation agrees with the original Eq. (4.2) if one replaces in the latter the constant v; by Y(N'i), and,
in addition, sums over the index i not from 1 to Nbut from 2 to N. We eliminate the second thermodynanﬁic
constant g, from the system in question. As a result, an equation of the type (4.4) is obtained in which ¥ -2)
replaces the parameter Y(N‘i). and the index i runs through the values 3, ..., N,

We continue the indicated procedure, accompanying the elimination of the next thermodynamic variable
qj each time by the limiting transition of Ai/)»j —0 (i=j+1, ..., N. After the (N— 1)-th repetition of this pro~
cedure a comparatively simple system of equations arises,
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d
5 .2y v 2 N 4.5
2 (amwv + €g¥ ) = Ozen T 4.5)

dyqn . N \
R e

which contains only the two desired functions v and qy. If the solution of (4.5) is known, the thermodynamic
variables qy, ..., Q-1 are determined from tt}e final relationships

Gi=—abv (i=1,.., ¥ =1). 4.6)
Their meaning is exceedingly simple: They are the conditions for the equilibrium occurrence of the first N—1

reactions. The process of gas compression is concluded after the N-th reaction arrives at a new equilibrium
state.

We will formulate the initial conditions which should be satisfied when the system (4.5) is integrated. We
obtain

e€.c

Lt A . )
v=ceN, g = etV (=1, ..,V 1, (4.7
t
ext 4V g 0
gn=———y——y® ,  Uv=-—T5hiy
Ay 79— D iy

from the asymptotic representations (2.9) with }»N/)\i—»o (i=1, ..., N—1) as xNy—", These equations show
that the asymptotic values of the functions v and qj(i=1, ..., N— 1) correspond to the final relationships (4.6).

The system (4.5) is equivalent to the single second~order equation

9 an d d

e (emas - ) ] (oma - et =0, (*.8)
It is also possible to obtain the latter equation from Eq. (1.5) by substituting the variable (4.1) into it and per-
forming the limiting transition of Aj+4/A;—~0 (=1, ..., N—1). The integral of (4.8) satisfying the asymptotic
initial data (4.7) is of the form

(1 (1) 1 (4.9
cN—xNz%.o-)ln]vl—[—(Q.-—gm)ln 2,,(0) [ ) )

It permits a significant simplification when h/(") |«1. In this case we introduce a new function being sought:

€ (0)
U= em L

and denote the constant quantities by

2 2
_ B 285 ) P em 0
g = ] _= — - — e
em LA am,, Y, exp 70 dy| = 5 eXp _’Y-(T)CN .
Then

u=—6th—?—(xN—dN).

This is the well-known Taylor solution, which describes the structure of a shock wave in a viscous heat-con~-
ducting gas [11]. As the amplitude tends to zero, the quasiequilibrivm process of compression of the relaxing
mixture in which a single reaction occurs conforms to this solution [5, 6, 12]. As the discussions presented
above show, the Taylor solution also specifies the structure of a2 weak shock wave in a chemically active mix~
ture with an arbitrary number of reactions on the condition that the velocity v of the advancing flow exceeds
only slightly the equilibrium sound velocity ag.. As the flow velocity at infinity increases in the range age <
Voo < (100 the compression of the mixture inside the single relaxation zone is determined by Eq. (4.9).

5. General Case. The subsequent increase in the velocity of the advancing flow leads to the necessity of
considering the gituation in which this velocity falls within the interval age <V <a@fo. For example, let
ozN_j,w<vw < O/ N-j+1,003 then Y(N'J"H) <0 <7(N'J). We will assume that both parameters Y(N'j) and Y(N‘jﬂ) are
comparable to unity in order of magnitude.

Taking Eq. (3.12) for the single positive root of the characteristic equation into account, we introduce the
variable
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z = -Zj/}\.j. (5'1)
The first equation of the original system (1.1) takes the form

N
. N 5.2
2(€moov-r8avf)d—:f= *632_}\’1—_‘%(7\12%4‘31‘”)‘ o:2)
i =1 "7
The remaining equations give
dg A, e, . -.
[ ‘-’iJrf”) (=1,...,j=1, -9
7 i
dg e, dg .
=, = '"(a,-ﬂi.‘”)r T =0 F=itt N

with the requirements )Lk/)nj —-0(k=j+1, ..., N) taken into account.

One can eliminate the thermodynamic variable q; from the system of Eqs. (5.2) and (5.3). After the
limiting transition of 7\1/7\1"’0 (i=2, ..., j) Eq. (4.4), in which the summation over the index i on the right-hand
side is taken from 2 fo j, isevidently obtained. We continue the procedure of eliminating thermodynamiec vari-
ables according to the rule described in the preceding section. As a result of the (j—1)-th repetition of this
procedure we arrive at the system of equations

2. (N—jt1)y dv LT .
2 (emee + 2y )'d7j=5“ef7#’ o
dq e, d,
.__._—.. J : qh.__ —_— 7 !
d:z: (q, jb), T"",_ (k—]—,—i,,N)

After its solution is constructed, the first j — 1 thermodynamic variables g, ..., 9j-1 are calculated from the
final Eqs, (4.6). The situation which has arisen can be interpreted naturally: The first j — 1 reactions proceed
uniformly, and the last N— j reactions are in a frozen state.

Now we will investigate what initial conditions must be imposed in connection with the integration of the
system (5.4). It follows from the asymptotic representations (2.9) with Aj/}\i—-() (i=1, ..., § — 1) that as Xj——

€C . . | 5.
v=ce', gy =T, =, ], .( %)
i
e.c A N—j--1)
¥ ; - o
6= e o =0 k=i,
(N—3)
S S
W= == Ay

The above equations show that the asymptotic values of the functions v and qj{i=1, ..., ] — 1) are in agreement
with the final Egs. (4.6). As is evident from the differential equations and the initial data for the variables
ak(k=j+1, ..., N}, these thermodynamic variables remain equal to zero in the relaxation zone in question.

System (5.4) is equivalent to the single second-order equation
d L 2 N—i d —in d (5.6
= [(smmv - g2y Nty d—:]] + (emwv + e29V9) 7{;"; =0, )
which coincides with (4.8) when j=N. Of course, the above equation follows from (1.5) if one uses the variable

(5.1) and performs the limiting process for all A1+1/)»1——0 (i=1, ..., N=1). The integral of Eq. (5.6) with the
asymptote (5.5) has the form

'\la(N“J.+1) 1 . -\,(N—H—i)
C]""-Z‘]——-q?:\(—-_—.’)—- nll][—!— 2_W)ln

g2y N9 +—;—emwv 6.7

as xXj—— and changes into (4.8) when j= N,

A large difference exists between the gas motion under discussion and that which was investigated in
Sec. 4. Wheh gge <V < Cjeos the compression process concludes with the arrival at equilibrium of the N-th
reaction in a single relaxation zone. In the general case @N-j,0 <V < O N-j+1,00 the tending of the j~th reaction
to equilibrium does not complete the compression of the chemlcally active mixture. Stretching behind the first
relaxation zone are other wider relaxation regions in which the dominant role belongs to reactions with the

numbers j+1, ..., N
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In order to construct the perturbation field in the next relaxation zone, we introduce the asymptotic
expression of the integral (5.7) as Xj—+eo

22 - i)
P o= __F’_a_?(N—]) + bj exp [ ¥ J ] (5.8)

em, 2y(N=i) Y(N—J-‘-i)
_ A N—i+1)
5 262 T 2N (N P N=i) :
by = = | —2 p(N=0) exp L
T emy, | emy, 2\7(”“]) Py D |

which remains valid when j= N. From the second equation of the system (5.4) we obtain the asympto»te of the
thermodynamic variable

282 . (N—5) _ p(N—j+1) (N—f)y, 1
= % (N—j , 2y —7 _ ¥ ; _
=7 { my ¥ ‘ T b exP[ 2D _ D +dyexp(—zy)

with the new variable dj. In other words, at the end of the first relaxation zone the thermodynamic variable in
question tends to its own equilibrium value

e, 22 5.9)
_ 7 @, AN—3) :
j=— ==y Ugj = =— —— .
q; A 55 sJ e, v

If one calculates the parameters of the particles behind the shock front (discontinuity) in a mixture in which
the first a¢o Teactions have reached equilibrium, the role of the frozen sound velocity afw will evidently be
played by the intermediate velocity aN-j,«. The quantity vgj is nothing else but the velocity of the gas par-
ticles in the case of such a sudden compression.

As is evident directly from the original Egs. (1.1), the scale of the next relaxation zone should be speci-
fied by means of x=x; +1 under conditions of the equilibrium occurrence of the first j reactions. Discus-
sions which are completeI]y analogous to those above lead to the system of equations (5.4) with the replacement
in it of the subscript j by j+1. After its solution the thermodynamic variables qy, ..., qj can be calculated with
the help of the final Eqs. (4.6).

In order to supply the initial data which are necessary for integration of the differential equations in the
second relaxation zone, we make use of the principle of splicing the exterior and interior asymptotic expansions
[13]. Thus, as

A
Zjtt = —];% Zjs
we find from the limiting conditions (5.9) at xJ-+1=O
22 22 e, (o {5.10)
. (1\—1) . a “i (N—) P oame :
U__em.x? Qi—em A, Y E=1 i)

g =0 (k= ]+1'-'-::N)

The corresponding initial values of the derivatives are

2 2 2 .
v 8 ey da; 2¢2 €1 Y(N—]). (5.11)

. ?
dz; 8my, Aiiy dr; iy BMg, gy

In order to construct the solution of the Cauchy problem which has been formulated, we apply the second-
order Eq. (5.6}, having in advance replaced the subscri’ptj in it by j+1. Its integration gives

(N— J)) 1

2 2, (N—j—1}
(amxv -+ 8 T g Mool + &gy U= ¢jyqq.

Substituting the initial data (5.10) and (5.11) here, we find that the arbitrary constant C3+1 0. This value of the
constant C3+1 will lead to the integral (5.7), in which J+1 appears instead of j. Eqs. (5.8) determine the
asymptote of the perturbations upon exiting from the second relaxation zone, i.e., as Xj4p > 0.

This process can be continued without any changes at all. The solution obtained as a result gives an
asymptotic description of the motion of a chemically active mixture inside a completely dispersed shock wave.
When o/N-j, e <V < O'N-j+1,009 the perturbed region is split into N— j+1 relaxation zones, in each of which the
dominant role belongs to a single reaction. The width of all the preceding zones tends to zero on the scale of
any succeeding one. Therefore, continuous compression of the gas in any relaxation zone turns out to be
equivalent to its sudden compression in a shock front. It is possible in the investigation of the last stage of the
process in the (N— j+1)-th zone to treat the first N—j relaxation zones as a sequence of N— j discontinuities.
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To illustrate the theory developed, calculations have been made of the structure of a completely dispersed
shock wave in a mixture in which two reactions are occurring. It was assumed in the calculations that
& /em =1, §%€5 =2, 1, =100, €;=10, Ay=1, €,=1, and Y¢=—1.5. The results are illustrated in Figs. 1-3, in
which the solid lines correspond to the exact numerical solution of the problem, and the dashed lines correspond
to the data of the asymptotic analysis. The variables V=vfys, Q;=Mq1/AYe 1), Qy= A/ (Yee)), Q4 =wy/(Yee,), and
Q2= wy/(Yee,) were used in plotting Figs. 1-3, and the coordinate x,=A,x=x was selected as the independent
variable. The results of the asymptotic analysis agree well with those resulting from the numerical solution
of the original system (1.1).

6. Transition through an Intermediate Sound Velocity. We will investigate what happens when the flow
velocity v, is close to some intermediate velocity ON-jyoor [N this transition case ]‘)/(N"J l«1. In accordance
with Eq. (3.16) we will make the transformation

z = z;/py 6.1)

and we will understand by p; the single positive root of the characteristic equation. Transforming from the
original system of equations (1.1) according to the rule expounded in the two preceding sections, we have

L BN\ AV o dg; a9; 6.2
Z(BanUTSaY ! )'&';7 == 6a(€j—d—x?':—+€j+1 d;j , ( )
dg; Py ( i 99541 Ay i+
—_— e — + — p J = . JT1 . + v
dz; b \ YTV s b \DR TRt
dg ,
d_ml; = 05 k= J + 21 ) N

After solution of the system of equations (6.2) the first j — 1 thermodynamic variables qq, ..., Qj-1 are recovered
with the help of the final Eqs. (4.6). The relaxation process is characterized by the fact that it is impossible

to treat the j~th and (j +1)-th reactions independently. Although their rates differ in order of magnitude, pre-
cisely the mutual effect of both reactions determines the structure of the perturbation field as x ——«. The
introduction of the scale (6.1) is dictated by this fact. :

The initial conditions for the system (6.2) as Xj—"w are of the form

) e.e . i .
v=ce"” ¢, = ——fe”fx (i=1,...,j—1), (6.3)
T
e.c €+, .C
= — ol oM = L T
95 Ay + By PSR 1 }“j+1 ERT ’

, =0 (k=j+2,...,N)
It is clear that the asymptotic values of the functions v and qj(i=1, ..., j — 1) correspond to the final Egs. (4.6).

The system (6.2) is equivalent to the single third-order equation
(6.4)

2 ) A d ) 3\ dv , Ak S d
[ (omer + ™) 2] L (e - o™ B) 2] + L4 (emev + ™) £ o,
] j 7

az} By 3, dz;
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which can also be obtained directly from Eq. (1.5) if one converts to the variable (6.1) in Eq. (1.5). Integration
of Eq. (6.4) with the initial data (6.3) taken into account gives

d 2 (N—jttyy dv] , A L2 (N dv A 1 ——
%, [(smocv 4 g2y d—x]] + -# (emow + 24N 7) = + _Lﬁi (T eMmgp? - g2y ”u) =0.
7

From this it is possible to establish the asymptotic representation

3 JN—i—1) A

(N —j—1} . . . i+
em,, ¥ + b)+1 ekp [ Zv(l\v__j_i) — 'Y(‘V—i) Te xl}

V= —

for the function v, which is valid as x; —+®. Thus at the end of the first relaxation zone the thermodynamic

variables qj and qj+1 tend to the equilibrium values

2
a

e, e.
—_ J J+1
qj__. —

Us,j41 j+1 = — Us,jts  Usjbt = — (N—i—h), (6.5)
by VeIt i+ hojre s+ 1 4+ smw?

Egs. (6.5) are analogous to (5.9); therefore, construction of the solution in the remaining N—j —1 relaxation
zones follows the method indicated in Sec. 5.

We note the limiting case Y(N) =0. Right up to some point x=x* the flow remains unperturbed, i.e., v=
qj=0,i=1, ..., N. Let x*=0; then the solution has the form [12]

2
a

2g ‘ i
e Y= [1 -— exp (—- =5 klx)]

in the firstrelaxation zone. At the point x=0 the parameters of the gas are continuous, but their derivatives
with respect to the spatial coordinate vary discontinuously. Evidently, this point corresponds to the charac-

teristic of the differential equations which the flows of relaxing mixtures satisfy. Continuation of the solution
to the remaining N— 1 relaxation zones is accomplished according to the standard procedure described above.

P = —

LITERATURE CITED

A. L. Ni and O. 8. Ryzhov, "The equations of transonic flows of relaxing mixtures,® Izv. Akad. Nauk
SSER, Mekh. Zhidk. Gaza, No. 4 (1977).
2. L. G. Napolitano, "Generalized velocity potential equation for pluri-reacting mixtures,® Arch. Mech.
Stosowanej, 16, No. 2 (1964).
3. L. G. Napolitano, ®Nonlinear nonequilibrium flows,® 1. A, Rept. No. 142 (1969).
4. A. L. Ni and O. 8. Ryzhov, "Sound velocities in multicomponent chemically active gas mixtures,” Vestn.
Leningr. Univ. Mat. Mekh. Astron., No. 13, Issue 3 (1976).
5. E. V. Stupochenko, 8. A. Losev, and A. 1. Osipov, Relaxation Processes in Shock Waves [in Russian],
Nauka, Moscow (1965).
6. J. Clarke and M. McChesney, The Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).
7. J. F. Clarke and J. B. Rodgers, ¥Shock waves in a gas with several relaxing internal energy modes,® J,
Fluid Mech., 21, Part 4 (1965).
8. A. L. Ni, "The propagation of weak shock waves in media with an arbitrary number of chemical reac-
tions,® Prikl. Mat. Mekh., 41, No. 6 (1977).
9. L M. Gel'fand, Lectures on Linear Algebra [in Russian], Nauka, Moscow (1971).
10. A. L. Ni and O. 8, Ryzhov, "Limiting expressions for the intermediate sound velocities in nonequilibrium
flows with an arbitrary number of chemical reactions,® Prikl. Mat. Mekh., 41, No. 1 (1977).
11. G. L Taylor, "The conditions necessary for discontinuous motion in gases,” Proc. R. Soc., Sex. A, 84,
No. 571 (1910). :
12.  O. S. Ryzhov, "The strictly transonic mode in flows of a reacting mixture," in: Problems of Applied
Mathematics and Mechanics [in Russian], Nauka, Moscow (1971).
13. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic (1964).

181



